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1. UNIVARIATE DIRECTED GRAPHS

A direct graph consists of a set of g nodes and a set of directed arcs connecting pairs of

nodes. Such graphs are natural mathematical representations of biological and social networks

They are also used in various other applications such as statistical geography and transportation

networks, and in the study of disease contagion using acquaintance networks. For a social

network the nodes of a graph may represent individuals, groups, or even organizations, and the

arcs correspond to relationships or choices broadly interpreted to represent any type of binary

relationship. It is customary (e.& see Harary, Norman, and Cartwright. 1965) to use an

incidence matrix representation of directed graphs. Thus, corresponding to each graph is an

adjacency matrix, x = (x.). such that
l I if i choose j

j 0 otherwise (1

wherex = 0.

Holland and Linhardt (1975, 1979) and Prank (1971. 1981) summarize the historical

development of random graphs, for which the observed adjacency matrix is treated as the

realization of a matrix random variable. X, which has a probability distribution on the set of

all directed graphs with g nodes. Typically, the observed features of an empirically construed

directed graph are compared with the distribution of features that is generated by some

random graph. This basic idea can be traced back in the social science literature to Moreno

(1934).

One of the more interesting developments in the modelling of directed graphs is due to

Holland and Leinhardt (1981), who begin by assuming independence of relationships amongst

pairs of nodes or dyads. Their basic model can be represented in the form
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log Pr E1-X.i)(-X0) =1] X=

log Pr(1-X 0) = 1] = Xi..+ 4 +, ft*e,1 i

log PrCX.X.. = 1 = )..+ a + '0 +,9 ,& 2 9
J i IJ i j m

The parameter X, is required for normalization purposes (each dyad must be in one of thle

four possible states), fai) and (,8j) are effects that measure the productivity and attractiveness

*of the nodes, 9 is a choice parameter, and p is a measure "reciprocity." Note that model (2)

is loglinear in structure. Holland and Leinhardt present iterative methd for maximum

likelihood estimation for the parameters in this model (see the discussion of the estimation of

* parameters in loglinear models for categorical data in CONTINGENCY TABLES), and Pienberg

and Wasserman (1981a) provide an alternative approach based on a simple transformation of

the data and the use of the method of iterative proportional fitting*. They also suggest

* several generalizations of the Holland-Leinhardt model where, for example, the parameter P in

expression (2) is replaced by V

P + P, + Pi, 3

*where 1P, 0, and demonstrate how the parameters of this model can also be estimated by

iterative proportional fitting.

* Two outstanding theoretical statistical problem in connection with the Holland and Leinhardt

* univariate model and its generalizations are (i) the 'lack of an appropriate asymptotic

framework for inference (see the discussions in Fienbers and Wasserman (1981b) and Haberman -

* (1911)) which is needed to carry out goodns-of-fit tests, and (hi) the need for alternative

* models which allow for dyadic dependence and include the Holland-Leinhardt model as a

Spca case.

4-3



I

2. MULTIVARIATE DIRECTED GRAPHS

A mu/tivariate directed graph is simply a collection of univariate directed graphs with the

same g node. (The term multi-graph is also in wide-spread use.) If there are R such

univariate graphs, then we represent the mIltivariate graph by the collection of adjacency

matrices for the R univariate graphs, fx,, x2,... XR ). We may think of the R graphs as

representing either R different types relationships amongst the g nodes, or the same relationship

at R different points in time. In either case, we wish to think of an observed multivariate

graph as a realization of a random multivariate graph X = {X, X2..... X,}.

In the univariate situation we saw that each dyad had four possible realizations:

(1,1) arcs in both directions

(1.0) or (0,1) 0 arc in one direction ,

(0,0)}: no arc

Now each dyad has 2 possible realizations.

Fienberg. Meyer, and Wasserman (1981) have proposed a class of loglinear models for

- random multivariate directed graphs, that generalize some aspects of the Holland-Leinhardt

* model to the multivariate case. By sacrificing the node-level parameters, fai) and {,8},

associated with each univariate graph, these models incorporate not only reciprocity effects for

*- dyadic patterns of the form:

X - Y,
Relation r

but also exchange effects for patterns of the form:

Relation r,

x Y

Relation r,

and multiplex choice effects for patterns of the form:

o
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Relation r,

X Y.

Relation r2

as well as multivariate generalizations of these effects.

Although there are 22" possible dyadic realizations we only get to observe

21 + 2"(2" - 1)/2

states when the nodes lose their individual identities. We can still summarize the data in the

adjacency matrices of the multivariate graph by counting every dyad twice, once from the

perspective of each node. As a consequence we end up with a 221 table of counts, with the

2' cells orresponding to reciprocal arcs on each relation (both present or both absent)

*.' containing double the actual number of dyads, and each of the remaining 2'R(2'-1) patterns

yielding two symmetrically placed duplicate counts in the table.

Fienberg, Meyer, and Wasserman (1981) show how fitting a simple affine translation of a

loglinear model for the 2' + 2"-(2R-1) counts corresponds to fitting standard loglinear models

to the 221 table of duplicated and doubled counts,

3. TWO EXAMPLES

Holland and Leinhardt (1981) illustrate their univariate model on data collected by Sampson

(1969) who spent a year observing monks in an American Monastery. Sampson measured both

negative and positive relationships on four dimensions at five different points in time. The

same 18 monks were interviewed at three of these time points. Thus the data can be

represented in the form of an R = 4 x 2 x 3 = 24 variate directed graph involving 18 nodes

Holland and Leinhardt analyze only a single relationship from this data-set.

Oalaskiewicz and Marsden (1978) and Fienberg, Meyer, and Wasserman (1981) describe data

from a study of the formal organizations in a small midwest U.S. community of 32,000 persons

-' ... -' " .- ." '-" . .- - - • *- . " . . • * ..
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referred to by the pseudonym "Towertown." They focus their analyses on a subset of 73

orsanizations and their links on three relations: (1) information. (2) money, and (3) support

Thus the original data take the form of three 73X73 adjacency matrices. but the analyses focus

on a summary of these in the form of a 2 table of counts of pairs of organizations. The

full adjacency matrices are availabe in Fienberg and Galaskiewicz (1982). The most substantial

estimated effects in the loglinear models fitted by Fienberg, Meyer, and Wasserman are

associated with choices (O's), reciprocity (p's), and a multiplex-reciprocity effect associated with

the dyadic pattern:

Information

X Y

Support

4. SOME RELATED STATISTICAL APPROACHES

In a pair of related papers, White, Boorman and Breiger (1976) and Boorman and White

(1976) proposed a method, labelled as blockmodelling, for the analysis of data in the form of

multivariate directed graphs. A blockmodel for a network consists of a partition of the nodes

into blocks of structural equivalent nodes (i.e. ones which relate in the same way to all other

nodes in the network), and corresponds to a deterministic rather than a stochastic model.

Unfortunately, few directed graphs yield exactly to such blockmodels, and substantive social

science theory does not always suggest appropriate partitions. Thus White, Boorman, and

Brieger sugested the use of a statistical-like approach to the search for an "acceptable" block

model of a particular form, and they demonstrate their approach on Sampson's monastery data

described above.

Breiger. Boorman and Arabie (1976) describe a more general search procedure for a block

model structure, based on hierarchicl clustering* methods, and apply their method to a

study of directorship interlocks in American industry. These methods are closely related to
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other exploratory statistical procedures for row-column permutations of a matrix, such as

nonmetric nltidinnsional scaling* (see Arabic. Boorman, and Levitt (1978)).

Major drawbacks of blockmodel methods include: (i) their inexplicit use of formal parametric

models, (ii) the use of arbitrary criterion functions for the choice of partitions, (iii) the

inability to distinguish actual structure from chance variation. Their major advantage is that

they provide an explicit model for the pattern of responses, which many sociometricians find

very useful for thinking about sociological theory (see Light and Mullins (1979)).
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